

Course Specification (Bachelor)

Course Title: Properties of matter

Course Code: MPHY26222

Program: Medical Physics

Department: **Physics**

College: Science

Institution: University of Bisha

Version: 1

Last Revision Date: 30 August 2023

2023

P-153

Table of Contents

A. General information about the course:	خطأ! الإشارة المرجعية غير معرّفة
1. Course Identification	3
2. Teaching mode (mark all that apply)	خطأ! الإشارة المرجعية غير معرّفة
3. Contact Hours (based on the academic semester)	خطأ! الإشارة المرجعية غير معرّفة
B. Course Learning Outcomes (CLOs), Teaching Strategies an الإشارة المرجعية غير معرّفة.	nd Assessment Methods خطأ!
C. Course Content	خطاً! الإشارة المرجعية غير معرّفة
D. Students Assessment Activities	5
E. Learning Resources and Facilities	خطاً! الإشارة المرجعية غير معرّفة
1. References and Learning Resources	خطأ! الإشارة المرجعية غير معرّفة
2. Required Facilities and equipment	خطا! الإشارة المرجعية غير معرّفة
F. Assessment of Course Quality	6
G. Specification Approval Data	6

A. General information about the course:

2

1. Course Identification

1. Credit hours:

|--|

2.	2. Course type					
Α.	University 🗆	College 🗆	Departmen	t⊠ Track⊡	□ Others□	
Β.	Required 🖂	Elective				
3.	Level/year at wh	nich this cours	e is offered:	4 th Level / 2 nd v	ear	

4. Course general Description

This course introduces completely knowledge of properties of matter and the fundamental and general laws related to elasticity, pressure, buoyancy, surface tension and capillarity, fluid dynamics and molecular transport phenomena.

5. Pre-requirements for this course (if any):

NA

6. Co- requirements for this course (if any):

NA

7. Course Main Objective(s)

Recognize the fundamental properties of matter.

1. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	2	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

2. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	

Total

30

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understar	nding		
1.1	Recognize the elasticity, pressure, buoyancy and surface tension.	К1	Lecturing	Quizzes Homework
1.2	Describe the fluid dynamics and molecular transport phenomena	К1	Lecturing	Midterm exam Final exam
2.0	Skills			
2.1	Solve problems in the stress, strain, pressure, buoyancy,	S1	Solve problems.	Quizzes Homework Midterm exam Final exam
2.2	Solve problems in the fluid dynamics, and molecular transport.	S1	Solve problems.	Quizzes Homework Midterm exam Final exam
3.0	Values, autonomy, and responsibility			
3.1	Exhibit self-learning skills independently.	V2	Self-learning	Reports Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Elasticity: Stress and Strain - Tension and Compression - Shear Stress and Strain - Bulk Stress and Strain - Elasticity	4
2.	- Bulk Modulus: Volume Elasticity - Young's Modulus - Elasticity in Length - Shear Modulus: Elasticity of Shape	4
3.	- Hook's Law - Elastic Strain Energy - Bone Fracture: Energy Considerations	4
4.	Pressure: - Pressure - Density - Pascal's Principle	4

	 Measurement of Pressure Pressure and the Human Body. 	
5.	Buoyancy - Archimedes' principle - The Buoyant Force	4
6.	 The factors affect buoyant force Applications of Buoyancy -hot air Balloon, ship and fishes- 	4
7.	Surface Tension and Capillarity - Surface Tension - Capillarity - Surfactants and the Lung	4
8	Fluid Dynamics of Non-viscous Fluids - Definitions of Some Key Terms - The Equation of Continuity - Bernoulli's Equation	4
9	Fluid Dynamics of Viscous Fluids - Viscosity - Turbulence	4
10	 Molecular Transport Phenomena Diffusion Osmosis Applications to Biological Systems. 	4
	Total	40

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 10	10 %
2.	First term exam	7: 8	10 %
3.	Second term exam	12: 13	10 %
4.	Practical exam	End of Semester	20 %
5.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Introduction to Biological Physics for the Health and Life Sciences, 2 nd Edition, by Kirsten Franklin et. All, Willey, 2019.
Supportive References	Physics for Scientists and Engineers, 10 th Edition, by Raymond A. Serway, John W. Jewett, BROOKS/COLE CENGAGE Learning, 2019.
Electronic Materials	- Blackboard.

	- PowerPoint presentations.
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
NA	NA
Technology equipment	Projector or smart board
Other equipment	NA

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	1
DATE	5 September 2023

